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Asymptotically exact evolution equations for counterpropagating shallow-water edge 
waves are derived. The structure of the equations depends only on the symmetries of 
the problem and on the fact that the group velocity of the edge waves is of order one. 
As a result the equations take the form of parametrically forced Davey-Stewartson 
equations with mean-field coupling. The calculations extend existing work on 
parametric excitation of edge waves by normally incident waves to arbitrary beach 
profiles with asymptotically constant depth, and include coupling to wave-generated 
mean longshore currents. Dissipation arises generically from radiation damping, but 
we also consider heuristically the effects of linear boundary-layer damping. Spatially 
modulated waves do not couple to the parametric forcing due to the non-locality of the 
evolution equations and are damped. Thus only spatially uniform wavetrains are 
expected as stable solutions. If linear dissipation is included the parametric coupling 
selects standing waves, but in the undamped case travelling wave states are possible. 
Both classes of solutions are examined for modulational instabilities, and stability 
conditions for the generic evolution equations are presented. However, modulational 
instability is found to be excluded in the shallow-water formulation through the effects 
of the mean flow. Explicit numerical results for two experimentally relevant beach 
profiles, exponentially decaying and piecewise linear, are presented. 

1. Introduction 
This paper is a contribution to the study of the stability and dynamics of edge waves 

driven parametrically by onshore waves. The first discussion of linear, coastally 
trapped waves dates back to Stokes in 1846. Much of the subsequent analysis makes 
use of simplifying assumptions designed to deal with several of the harder or more 
technical aspects of the analysis, including general beach profiles and the transition to 
deep water, radiation and viscous damping, wave-driven mean flows, and the dynamics 
of the interaction between counterpropagating edge waves. Certainly much of the work 
is self-consistent within the framework postulated; for instance, Minzoni & Whitham 
(1 977) carried through their analysis without the shallow-water assumption, but 
considered only undamped standing waves on a beach of constant slope. Recently a 
number of papers have addressed some of the other problems. Miles (1990b) and 
Mathew & Akylas (1990) have partially accounted for radiation and viscous damping, 
general profiles and the transition to deep water, while Akylas (1983) and Miles (1991) 
have addressed the dynamics of counterpropagating Stokes edge waves. The present 
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paper is closest in spirit to that of Akylas (1983) in that we focus on deriving envelope 
equations for parametrically driven counterpropagating edge waves. Akylas uses the 
full water wave equations, but is only able to treat beach profiles of constant slope 
n/2N, where N is an integer, and does not consider wave-driven mean flows. On the 
other hand, the shallow-water formulation that we use enables us to consider arbitrary 
beach profiles, provided that these asymptote to a constant depth in the offshore 
direction. Minzoni (1976) has shown that in this case the shallow-water formulation 
preserves the essential characteristics of the deep-water theory. More importantly, we 
show that the equations derived by Akylas (1983) require modification because the 
group velocity is O(1). As a result the asymptotically correct amplitude equations 
contain non-local terms which modify the stability properties of non-uniform trains of 
standing edge waves. In addition we emphasize the importance of wave-driven mean 
flows in the edge wave problem, an effect largely ignored in the literature, except as 
discussed by Miles (1991). The equations we derive for the amplitudes of the two 
counterpropagating trains of edge waves include self-consistently the coupling to such 
flows. Finally, we relate the problem of parametric excitation of edge waves to existing 
work on the Faraday system, emphasizing in particular that the parametric forcing 
favours standing edge waves over travelling edge waves, at least for normal incidence 
of the external wave field and moderate detuning of the forcing frequency. 

Throughout this paper we assume that the beach profile and incident wave field are 
uniform in the longshore direction. The basic structure of the amplitude equations 
describing the interaction of counterpropagating edge waves then follows from the 
observation that, with periodic boundary conditions in the longshore direction and 
normal incidence of the external wave field, the system has O(2) symmetry. This is the 
symmetry of a circle under rotations and reflections, the rotations being identified with 
translations in the longshore direction modulo the spatial period, and the reflections 
with those in vertical planes in the offshore direction. As a result of the O(2) symmetry 
in the longshore direction, the competition between counterpropagating waves in the 
longshore direction selects either a standing wavetrain (which maintains the reflection 
symmetry) or a travelling wavetrain (with the upshore and downshore wavetrains 
related by reflection symmetry). This wave selection process is nonlinear. In the 
absence of forcing, however, such waves decay because of both viscous and radiation 
damping. To maintain the wave against decay, external forcing by an incident 
wavetrain is necessary. The excitation mechanism is parametric in nature, with edge 
waves of frequency w and amplitude O(s) being excited by incident waves of frequency 
near 2w and amplitude 2. With normal incidence, this parametric forcing respects the 
O(2) symmetry and results in a problem of the type studied by Riecke, Crawford & 
Knobloch (1988). For spatially uniform wavetrains these authors showed that the 
parametric forcing couples the two counterpropagating waves and as a result favours 
the existence of standing waves. In the present paper we confirm this result in the 
context of edge waves and show explicitly how our evolution equations reduce to the 
required O(2) equivariant form for uniform wavetrains. However, the stability of non- 
uniform trains of standing waves in dispersive systems is complicated by the presence 
of a non-zero group velocity. When the group velocity is O(e) the resulting problem is 
described (in the Hamiltonian case) by a pair of nonlinear Schrodinger equations with 
local coupling (cf. Akylas 1983). This is no longer the case when the group velocity is 
O(l), with the coupling now being of mean-field type (cf. Knobloch & Gibbon 1991 ; 
Knobloch, 1992; Pierce & Knobloch 1993). 

The paper is organized as follows. In 92 we derive the asymptotically exact evolution 
equations for counterpropagating shallow-water edge waves. In 0 3 we generalize these 
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equations slightly to allow for viscous dissipation and small detuning of wavenumber 
and frequency. We than analyse the existence and stability of both spatially 
homogeneous and inhomogeneous wavetrains. There are significant differences 
between the results of our analysis for spatially modulated solutions and previous 
work. This is due in part to the non-locality of the evolution equations, and in part to 
the strong coupling between the edge waves and the mean flow in the bulk. Explicit 
computations for two beach profiles are performed in $4. In the final section we argue 
that spatially inhomogeneous edge waves require a compatible mean flow in the bulk 
which can support the modulations at the beach, and that, within the shallow-water 
equations, it is apparently impossible to generate such a mean flow. We conclude that 
the coupling of edge waves with longshore flows favours spatially homogeneous 
wave trains. 

2. Asymptotic expansion 
Throughout this paper we assume that the inviscid shallow-water equations are 

uniformly valid in the domain (0 < x < 00, - 00 < y < co}, where (x,y)  are the 
offshore and longshore coordinates, respectively. The equations are 

where h 2 0 is the depth (measured downwards), Cis the surface elevation, and $ is the 
horizontal velocity potential. The operator V denotes (a/ax, i3/ay). Eliminating 6 one 
obtains an equation for $ alone: 

gv - - A t  = V $  * V A  + v * +; IVN)  V$l. (2) 

We assume that the beach profile, h(x), is such that h(0) = O,h’(O) + 0, and that it 
asymptotes monotonically to a constant value, h,, beyond a fixed O( 1) distance from 
the shore, x,. The boundary conditions on the potential require it to be regular at 
x = 0, allowing for oscillatory run-up but not breaking, and bounded in the far field 
as x+ 00. We choose dimensions such that h, = g = 1 ,  where g is the acceleration due 
to gravity. We now introduce the slow variables 

and expand $ and 5 in an asymptotic and harmonic series: 

m m=n l=n 

$ = C C C cn$[nmlleimkye-izwt, 

where $cnmzl $[nmt](x, ‘9 ‘, 7) = iJ[n(-m)(-l)j? (3  d )  

Ccnmz] Ccnml](x, Y,  ‘ 9  7) = cn(-m)(-z)l. (3 e) 

Here k is the wavenumber of the edge waves and w their frequency; in this formulation 
the frequency of the incident waves is 2w. Note that although it is possible to introduce 
the slow variable cx as well, we have found that this is unnecessary and results in no 
greater generality. This is a consequence of the uniform validity of the shallow-water 



140 R. D. Pierce and E. Knobloch 

equations in the present problem and the assumption that the incident wavetrain and 
the depth profile are unmodulated on scales of O(e-l). Substituting the expansion (3 b) 
into the partial differential equation (2) and collecting powers of 6, eiky and e-lUt, one 
finds that the various terms must have the following forms: 

= B(Y, T,7)b,  $121(kl)l = D'(Y, T)a+iA$p, $[11(*1)1 = A*(Y, T,7)a,  
(4 a-c) 

$ p z o ]  = A+A-s, $[znz] =j+iA+A-g, $[22(*2)1 - - +iAk2r, - (4 d-f> 

&mi = C(Y,  &on] = d, d+31(fi)i = e + .  (4g-9 

Here an upper case letter denotes an amplitude which is a function of the slow variables 
as indicated, while a lower case denotes a function of the fast offshore coordinate, x. 
No other amplitudes enter in the subsequent calculations. The amplitudes A* describe 
the slow evolution of upshore and downshore travelling edge waves and are the 
quantities of primary interest in the present paper. These amplitudes will be found to 
couple to the leading-order mean flow whose longshore variation is specified by the 
quantity B. Consequently, in the following we seek dynamical equations linking the 
evolution of the three amplitudes A' and B. This derivation will be carried out for a 
coastally trapped wave whose decay in the offshore direction is specified by a(x). This 
function may, without loss of generality, be taken to be real, and is an eigenfunction 
of a boundary value problem given below. The functions q(x) and j ( x )  represent 
radiated waves and a superposition of incoming and reflected waves propagating 
normally to the beach, respectively. Thusj represents the forcing of the edge waves by 
an incident wave. In the absence of viscous dissipation, j is sinusoidal in the far field. 
Note that this wave is uniform in y and has amplitude O(e2) and frequency 20. We have 
allowed a slight loss of generality in not providing a slowly varying amplitude for j .  
Foda & Mei (1988) consider the effects of such variations on scales of O(e-l), but we 
observe that there is no self-consistent mechanism for generating these variations away 
from the boundary when the incident wave field has a steepness of O(e2). 

For each order and harmonic, we have a boundary value problem for the fast 
offshore dependence on the semi-infinite interval X E  [0, + co]. At order [ 11( f l)] we 
obtain the linear problem 

This equation is a Sturm-Liouville eigenvalue problem for w (alternatively, k) .  Since 
h'(0) $: 0, the equation has regular singular points at x = {0, + co}, with zero exponents 
at x = 0. We impose the requirement that the edge-wave eigenfunction, a, be in L2 
(coastal trapping) and regular at x = 0 (no wave breaking), thereby restricting w to the 
point spectrum 0 < o2 < k2 (Minzoni 1976). Consequently a(co) = 0, and we choose 
the normalization such that a(0) = 1. The point spectrum consists of a finite set of real 
positive eigenvalues, w(k), whose precise number depends on the depth profile and the 
wavenumber. This is very different from ' shallow water' formulations using equations 
(l), but where the depth is allowed to increase to infinity with the distance from shore; 
as discussed by Minzoni (1976) these formulations are anomalous, allowing a 
countable infinity of modes for all k .  Specifying the frequency of the incident wave and 
the mode number of the linear solution automatically selects the wavenumber of the 
edge wave. Conversely, selecting the longshore wavenumber forces a choice of 
frequency, though weak detuning is allowed via the multiple-scales expansion. 
Typically, in some range of k the selected mode will be unique. When more than one 
mode is excited by the incident wave, the addition of viscous damping will shift the 

(wz - k2h) a + (ha')' = 0. ( 5 )  
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eigenvalues off the real axis by different amounts, thereby selecting the preferred mode 
number (cf. Guza & Davis 1974). When k is assumed fixed and w is increased, the mode 
that is selected in this way is the first one. For a monotonic beach profile, this mode 
has no zeros, while the second mode has one zero, etc., a result that follows from the 
oscillation theorem for the Sturm-Liouville problem (5 )  (Weinberger 1965). Thus the 
first mode corresponds to the simplest, intuitive flow pattern while higher modes 
represent ‘cellular’ patterns in the offshore direction. When w is held fixed, however, 
the mode selection process is more involved, and no general statements can apparently 
be made. 

At order [21( k l ) ]  one finds that A$ k cg A$ = 0, with the constant cg identified with 
the edge-wave group velocity and determined from the solvability condition for the 
equation 

This equation will have a solution in L2 if and only if 

(d-k%)p+(hp’)’ = 2(cgw-kh)a .  (6 4 

The corresponding solution for p may be formally obtained as a sum over the 
remaining discrete eigenvalues plus an integral over the continuous spectrum. In 
contrast to the q-equation discussed below, there will be no radiation generated by this 
integral, since the inhomogeneous term is in L2 and the eigenvalue of (5)  does not 
intersect the continuous spectrum. The requirement A$ & c g A $  = 0 is implicit in the 
work of Akylas (1983) and was also noted by Foda & Mei (1988). Mathew & Akylas 
(1990) and Miles (1991) consider only edge waves that are spatially uniform so that this 
requirement does not arise in their expansions. 

The remaining boundary value problems up to O ( 2 )  are 

(hb’) = 0, (hc’) = 0, ( 7 4  b) 
4w7 + (hj’)’ = 0,  4 d q  + (hq’)’ = - 2w(k2a2 + 2 d 2  + a d ) ,  (7c, d )  

-4k2hs + (hs’)’ = 0, 4(w2 - k‘h) r + (hr’)’ = w(3k2a2 - 2a” -ad’). ( 7e , f l  

A priori, the only boundary conditions placed on the solutions are that they be 
bounded at x = 0 and x = co. More precise conditions, appropriate to evanescent and 
radiating solutions, will be discussed and applied below. The bounded solutions of 
(7a, b) are b(x) = c(x) = 1. The j -  and q-equations have no point spectrum. Thus q 
may be formally constructed as an integral over the continuous spectrum, while j is a 
homogeneous solution which must satisfy the boundary conditions on the external 
wave field at x = 00. However, the eigenvalue of (5)  will always intersect the 
continuous spectrum of the linear operator in (7d) ,  so q will have a simple pole in its 
eigenfunction transform. This pole will generate a solution that is not evanescent and 
corresponds to radiation. The integration contour must therefore be chosen 
appropriately to satisfy the radiation boundary condition. This integral cannot be 
evaluated in closed form for most profiles. Miles (1990b) obtains an approximate 
solution by truncating the expansion, while we avoid the issue by obtaining numerical 
solutions (see $4). It is important to note that as long as the eigenfunction transform 
of the inhomogeneous terms does not have a zero at w2,  this type of radiation will 
always be present. 

The equation for s has no oscillatory solutions as x+ co. Multiplying (7e) by the 
complex conjugate of s and integrating by parts gives s = 0. We note that this is a direct 
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consequence of the fact that the two counterpropagating edge waves have identical 
offshore spatial dependence, since otherwise (7 e) would have a non-vanishing 
inhomogeneous term. We will discuss this point further in $5. 

The last equation, for r ,  will in general have both a discrete and a continuous 
spectrum. However, rescaling x by a factor of 2 gives (4’ - k2h(ii)) f +  (h@) f’)’ = 0 as 
the homogeneous part. The assumption that h is monotonic implies that h($c) < h(x), 
so that the monotonicity theorem (Weinberger 1965) gives the result that 6ji < wj  for 
each eigenvalue and a given k. Thus there is no solvability criterion, and Y may again 
be found by an eigenfunction transform. Since the continuous spectra of (5) and 
(7f) are the same, w’ will not intersect the continuous spectrum of (7f). Consequently, 
the transform of r will be analytic and there will be no radiation generated by this term. 
If the eigenvalue of ( 5 )  happens to intersect the point spectrum of (7f) because of a 
higher mode or a non-monotonic profile, we have a modal resonance problem, and the 
asymptotic expansion, (3), must be modified accordingly (McGoldrick 1970). 

At third order in e, we obtain three equations of importance. At [300] we have 

(hd’)’ = BTT-hBy,+(cg k2a2+2koa2+2cga‘2~cgaa”-w(pa”-ap’‘))(l~-12-l~+12)y, 
(8 a)  

while at [31(+ l)]: 

(w2 - k’h) e+ + (he+’)’ = - 2iwaD; - 2ikahD: - 2iwaAf + (ci a - ah - 2c, wp + 2khp) A$y 

+ iwA-(2k2aj- 2a‘j‘ - 2ja“ + aj”) + A+ IA+I2 [w(6k2ar + 2a’r‘ + 2ra”- ar”) 

+ !j( - 3k4a3 + k’aa’’ + k’a’a” + 9a’’a”)]+ A+ IA-1’ [w( - 2k2aq + 2a’q‘ - 2ia’s’ 

+ 2qa” - aq” - ias”) + ( - 3k4a3 + k’aa’’ + k’a’a“ + 9a”a”)]+ A+ [( - k’a + a”) B, 

+ 2kwaBy], (8 b) 

and 

(w’ - k’h) e- + (he-’)’ = 2iwaD; - 2ikahD~ + 2iwaA; + (ci a - ah - 2cg up + 2khp) AYY 

+ iwA+( - 2k2aj’ + 2a’7 + 2ja” - a 7 )  + A- IA-1’ [w(6k2ar + 2a’r’ + 2ra” - ar”) 

++( - 3k4a3 + k’aa’’ + k’a’a” + 9a’“’’)] + A -  lA+I2 [w( - 2k2aq+ 2a‘q‘ + 2ia’s’ 

+ 2qa” - a$‘ + ias”) + ( - 3k4a3 + k’aa’’ + k’a’a‘‘ + 9a’’a”)l + A- [( -k2a + a”) BT 

- 2kwaBy]. (8 c) 

The solvability criteria require that the right-hand side of the e* equations (8b, c) be 
orthogonal to a in L2, and that the integral of the right-hand side of the mean flow 
equation (8a)  over [0, 031 must vanish. The latter gives two separate conditions: 

(94  b) B,, - By, = 0, By, = p(lA+I2 - IA-12)y. 

Equation (9a) implies that any inhomogeneous or unsteady mean flow must take the 
form of a shallow-water wave with O(e-’) wavelength and period. Equation (9b) 
implies that standing waves (IA’I = 1A-I) are not associated with mean flows, but all 
other waves do generate such flows. The coefficient p is given below. The solvability 
conditions for (8 b, c) yield evolution equations for D’, the second-order corrections to 
the edge waves. In terms of the new longshore coordinates x+ = Y f cg T these take the 
form 

- 2icg VD,~. T ivA‘ + (01, iai) A + v, k ipi) A? + (yr  k iy,) A ; + ~ +  + (8, k isi) A’ IA’I’ 

+(h,+ih,)A* IAT1’+A’ [OIBTfkvB,] = 0, (10a, b) 
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where A:T = 0. In (10a, b) the coefficients are given by integrals over the interval [0,00] : 

kv - cg el 
= 1; (1 - h) dx’ 

a = 0, (1 1 b) 
00 

/3 = iw s a(2k2aj- 2a’j’ - 2ja” + aj’) dx, 

y = 1: a(ci a - ah - 2cg wp + 2khp) dx, 

0 

a(6k’ar + 2a‘r’ + 2ra” - ar”) dx, 

h = O2 + w 1; a( - 2k2aq + 2a’g’ + 2qa” - aq”) dx, (1 If 1 

6,  = lom a(a” - k’a) dx, 

O2 = lom a( - 3k4a3 + k’aa’’ + k’a’a” + 9a1’aN) dx, 

( l l i )  

The aa”, up“ and pa” terms in the expression for p have been reduced by an integration 
by parts, followed by a power series expansion of the regular solutions for a and p near 
x = 0 to obtainp’(0) and a’(0) in terms of a(0) andp(0). The final stage in the derivation 
is the observation that the expansion for $(x,y, t) remains asymptotic for y and t of 
O ( C - ~ )  if and only if the D’ do not contain any secular terms in x+ . If this requirement 
is not met the ordering assumed in the expansion (3b) will be violated at y and t of 
O ( C - ~ ) .  The resulting solvability conditions for D+ take the form (Knobloch & Gibbon 
1991; Knobloch 1992): 

ivAf = aA++/3(A-),-+yA,fi ,++6A+(A+I2+hA+ (IA-I2),-+A+ (OIB,+kvB,),-, 

(12a) 

Here the notation ( ),’ denotes an average over the variable x+, either over a period 
in x+ if periodic boundary conditions are imposed, or over the real line if not. 

In order to proceed we need to evaluate the coupling to the mean flow, B. This flow 
appears linearly in both (9a, b) and (12a, b), and so may be written as a sum of the 
second-order Eulerian drifts associated with each wave plus an apparently arbitrary 
gauge which is linear function of T :  

B B+(x+, 7) + B-(x-, 7) + K ( 7 )  T. (134 
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Integrating (9 b) once with respect to Y gives 
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Bi+ = pJAfI2 and B;- = -pJA-I2.  U3b, c) 

No constants of integration are added since B’ are only generated in response to A*,  
respectively. The addition of the linear function of T to B does not affect the physical 
velocity, By,  nor does it affect the shallow-water wave equation, (9a). We need this 
freedom, however, to make sure that the mean water level at x = GO remains 
unchanged by the presence of the edge waves. From (1 a) we find that l&ool = 0, but 
that 

= - B, - (k2a2 + a’2)(IA’12 + 1A-I’). (14) 

This expression is commonly referred to as the ‘set up’ or ‘set down’ associated with 
the edge waves and is independent of any set up or ‘storm surge’ associated with the 
incident wavetrain. The second term represents an O(2) change in the water volume 
per unit length of beach that has been observed experimentally (Yeh 1986). This 
volume change does not violate the conservation of mass, since it may be offset with 
an infinitesimal change of water level in the bulk. As x+ GO the second term falls off 
exponentially, however, and &2001 + - B,. Hence the requirement that the mean water 
level at x = GO remains unaffected is equivalent to the requirement that the spatial 
average of this term must be zero, ( B T ) Y  = 0. This in turn forces a specific choice of 
K :  

K = pc,((lA+I2),+ + (IA-I”>,->. (15) 

Using (13) and (15) the derivatives of B may be written in terms of A’, and B 
eliminated from (12a, b) : 

where d = 6+p(kv-c,8,), 0 = pcs8,, and A = A-pkv.  Equations (16a, b), together 
with (9a, b) and (13), constitute the desired amplitude equations for counter- 
propagating edge waves, and are a pair of non-local equations with mean-field 
coupling, and an additional coupling to the mean flow. In the absence of parametric 
forcing (p = 0), similar equations have recently been derived by Matkowsky & Volpert 
(1992) in their study of instabilities of a propagating combustion front. Generically, all 
the coefficients in (16) will be complex, except for 0 and v. However, from (7) we see 
that only q and j are potentially complex, since they must satisfy non-trivial boundary 
conditions at x = GO. Thus within the model system defined by (1) the coefficients y and 
d are also real, and only the coefficient A is complex. Moreover, the coefficient /3 may 
be made real by rotating the phases of A’, and we assume hereafter that this has been 
done. Nonetheless, we have written the equations in the general form (16), anticipating 
that in more general circumstances the coefficients a, y and d will also be complex (cf. 
Miles & Henderson 1990). Note in particular that, as derived, the evolution equations 
have a = 0. This is a consequence of assuming an exact 2: 1 resonance between the 
incident wave and the edge wave. More generally an incident wave of frequency 2w 
excites edge waves of frequency w-c2a,/v, where a, is a detuning parameter. Such a 
detuning may arise from a variety of mechanisms, such as viscosity or external 
constraints on the wavenumber of the fundamental edge wave. More fundamentally, 
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however, it describes the effect of longshore modulation on O(cc2) lengthscales. This 
can be seen by introducing a slow lengthscale Y' = e2y (cf. Knobloch 1992) in addition 
to Y. Proceeding as above one recovers (16), but with additional terms -ivc,A& on 
the right-hand side. Separable solutions of the form A +( Y,  Y', 7) = A + (  Y,  T )  einY' then 
lead to (16) for A+(Y,7) ,  with a, = vnc, + 0, provided n + 0. As shown below, the 
detuning plays an important dynamical role because of the parametric forcing. In the 
edge-wave problem the imaginary parts of a, y, d and A are of either dissipative or 
radiative origin, as discussed further in $5; in the absence of forcing these terms are 
responsible for the decay of the waves, as can be readily verified by constructing an 
equation for the wave energy E = f[(lA+12)>,++ (IA-I')>,-]. The waves can only be 
maintained against this decay by the incident wavetrain (p + 0). 

The presence of the mean field terms in (1 6 a, b) is a consequence of the O( 1) group 
velocity. These terms imply that counterpropagating patterns 'see' each other only in 
the mean. These terms do not affect the stability properties of a unidirectional 
wavetrain, but do change the stability properties of standing wavetrains. This effect has 
been previously discussed in the context of water waves on arbitrary depth (Pierce & 
Knobloch 1993) and will be discussed further below. The averaged parametric 
excitation terms (p (A+),+ and p (A-) , - )  have not been previously analysed within the 
context of an O(2) symmetric problem with O(1) group velocity. The most important 
effect of the averaging is to eliminate all spatial dependence in the excitation terms. 
Thus we find that parametric excitation can only couple directly to spatially uniform 
patterns. It should be emphasized that this does not preclude solutions which are not 
spatially uniform, but it does mean that spatially non-uniform wavetrains will be 
damped by radiation and so will decay. 

For homogeneous wavetrains the evolution equations (1 6a,  b) reduce to coupled 
complex Ginzburg-Landau equations 

ivA,+ = aA+ +PA- + ( A  + 0) A+ IA+I2 + AA+ IA-I', (174 

(17b) - ivA; = ZA- + pA+ + (d+ 0) A- (A-1' + LA- 

as dictated by the resulting O(2) symmetry of the system. For uniformly sloping 
beaches, equations of this form were derived by Akylas (1983) and Miles (1991). In the 
case of no dissipation (or radiation), all the coefficients on the right-hand side of 
(17a, b) are real; more generally, the coefficients a, d and A will be complex. In the 
general case, (17a, b) have been studied by Riecke et al. (1988), who showed that the 
parametric forcing (p + 0) stabilizes standing waves at onset, even in cases where, in 
the absence of parametric forcing, travelling waves would be the preferred pattern. The 
basic reason is that the parametric forcing couples the waves that propagate in the 
upshore and downshore directions, eliminating pure propagating waves (i.e. A+ = 0 or 
A-  = 0) as solutions of the nonlinear problem. The counterpart of the propagating 
waves is a mixed state that bifurcates from the branch of standing waves at finite 
amplitude. See Riecke et al. (1988) for a detailed discussion of the secondary 
bifurcations described by (17a, h). 

The mean flow plays two roles in the derivation of (16). First, it affects the values of 
the nonlinear coefficients. In the absence of such flows p = 0 and hence d = 6 , 0  = 0 
and A = A. This change in the coefficients affects the stability properties of the various 
possible solutions, both in the parametrically forced system (p $; 0) and in the unforced 
system ('j = 0). For example, in the absence of dissipation, equations (16a, b) suggest 
that a free train of edge waves undergoes an instability leading to edge-wave solitons 
provided that d y  > 0, a condition that is affected by the value of p .  However, the 
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calculation leading to this result ignores the requirement that the associated mean flow 
satisfy equation (9a, b). Since these equations are incompatible with the soliton 
solution to equations (16a, b) we conclude that such solutions cannot be described 
within the inviscid shallow-water equations. The importance of the mean flow in 
predictions of this type was not recognized by Akylas (1983), who set all the [nOO] terms 
to zero and consequently the coefficient p as well. In $4  we present explicit examples 
showing that the coefficients p, 8, and u are all of O(1), and hence that the coupling to 
the mean flow results in an O(1) change in the nonlinear terms. Only for spatially 
homogeneous standing waves do the mean flow contributions cancel. It should be 
pointed out that for deep-water waves over a horizontal bottom of depth h,: the 
corresponding mean flow coupling coefficient p remains finite for finite h, but vanishes 
as hi1 in the limit that the depth goes to infinity (Pierce & Knobloch 1993). Since the 
edge waves inhabit a region where the depth is always of O(1), it seems likely that the 
coefficient p remains finite even in deep-water formulations of the edge-wave problem. 
In addition, the mean flow enters the stability analysis through (9) and (13). In 
particular, the perturbed mean flow must also satisfy the shallow-water wave equation 
(9a). This is an important constraint, and we will return to it in $5 .  

3. Stokes waves and modulational stability 
We now consider various special solutions to (16a, b) for inhomogeneous wave- 

trains, and to (17a, b) for homogeneous wavetrains. We consider two cases, 01, = A,  = 0, 
A, < 0 (radiative damping) and a, < 0, A ,  < 0, and Ai < 0 (linear and nonlinear 
damping as well as radiative damping). We focus first on spatially homogeneous 
wavetrains of the form 

A' = [R'(T)]ie'iei(T) (18) 

where R' and 8' are real functions. Substituting these expressions into (17a, b) yields 
a set of four ordinary differential equations: 

uR' = 201,R' -2/3(R'R-);sin(Of+8-)+2A, Rk2+2Ai R'R-, 

~8: = - 01, - /3 (R' / R '); cos (8' + 8-) - ( A  + 0 )  R ' - A,  R ' . 

uR, = 201, R-2(R2-Q2)~~sin8+2A,(Rz+Qz)+2Ai(R2-Qz),  

uQ, = 2(a, + 24, R) Q, 

( 1 9 4  

(19b) 

In terms of the variables R' = Rf Q and 8' = i(8k @), these four equations become 

(20 a> 

(20 b) 

Here the variable @ represents the total phase and decouples completely from the 
system. This is a consequence of the translation invariance of the system in the 
longshore direction. The phase difference, 8, does not decouple, however, because the 
parametric forcing breaks time-translation invariance (cf. Crawford & Knobloch 
1991). Equation (206) demonstrates at once that in the presence of linear or nonlinear 
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dissipation the variable Q evolves toward zero. Consequently, standing waves 
(R' = R-) are the preferred waveform (cf. Riecke et al. 1988). In order to maintain the 
generality of the following discussion, we take Q to be a constant, bearing in mind 
that in the dissipative case Q = 0. Note that solutions with Q $. 0 are accompanied by 
a mean flow By = 2pQ. 

The Stokes-wave solution to (20) is given by constant R, Q, 0, and $T = Q. To study 
its modulational stability properties, we linearize (16a, b) around this solution. 
Accordingly, we set 

A +  = (R+Q):,+~(O+W/~ (1 +V'(X',  711, (21 a) 

(21 b) 

The perturbations to the mean flow, w f ,  must in turn satisfy the linearized equation 
(9 b) plus the additional wave equation (9a)  as discussed in 6 5. The linearized equations 
for the edge-wave perturbations, v f ,  are 

ivv: = pi+,+ + c: v+ + c l i 7  + c l  (u+),+ + cl(3>,+ + cz (v->,- + c i  (U),-, (22 a) 

- ivv; = ~v;- , -+c;v-+c~v-+c;  (v-),-+cp ( V - ) ~ - + ~ ( V + ) ~ + + ~ ( ~ ) ~ + ,  (22b) 

B = B' + w+(x+, 7 )  + B- + w-(x-, 7) + KT. 

- _ _  - _ _  

where 
c: = ARk -Pe-ie(R'/Rf)i, c i  = AR' (230, b) 

c,' = OR', c: = OR', (23G 4 
c,' = ART +Pe-ie(RT/R*)t, c$ = ART. (23 e, .f9 

The averages over spatially inhomogeneous perturbations are themselves homo- 
geneous, thereby coupling the inhomogeneous perturbations to the amplitude and 
phase perturbations. This provides a potential mechanism for driving instabilities. 
Thus we consider perturbations of the form 

Vf = ~'(~)+;+(~)~irn*,y* +me-irn'x+ (24) 
_ _  _ _  

Ordering the variables as W = {P, 7, F', F, S+, ?+, S+, t"f, 5-, t"-, ;-, t"-}*, the differ- 
ential equations take the form 

v F =  ((?lo"- 0 ) W, 

I (7; &) 
where M, is a 4 x 4 matrix, M, is 4 x 8, and MZ are 2 x 2, The characteristic equation 
for this system takes the following special form: 

(26) 

where x is the eigenvalue. It follows that the stability criteria for amplitude 
perturbations (9 and modulation perturbations (i,o decouple completely. In the 
following subsections, we consider these in turn. 

det [M, - i/l det [Ml - det [8@ - i/l det [Mi - i/l det [e- h/l = 0, 
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FIGURE 1. Bifurcation diagram for standing waves (a, < 0). The concentric ellipses are the loci of 
solutions for various values of /3' = {O.l ,  1,3,6,10}. All states with R < 0 are unphysical, while all 
states below the diagonal line are unstable to spatially homogeneous perturbations. The coefficient 
values are: a, = - 1, Z = 1 - 1.22i. 

3.1, Homogeneous perturbations ; ai < 0 or Ai < 0 
The matrix M, governing the stability of uniform wavetrains with respect to 
homogeneous perturbations is given by 

There are two cases to consider, the dissipative case with R+ = R- = R, and the case 
with neither linear nor nonlinear dissipation for which solutions with R+ $. R- become 
possible. The former case is considered in this section, while the latter is postponed to 
33.2. In the present case, either linear (ai < 0) or nonlinear (Ai  < 0) damping is 
sufficient to force Q = 0 as the only solution to (20 b). The remaining equations (20) 
have the non-trivial solution : 

(28 a-c) 

R = 1Z1-2 { - (a, 2, + a, Zi) f [(a, Z, + a, ZJ2 - /Z12(la12 - p')];}, (28 a> 
where C ZE A + 0 + A .  This solution corresponds to a spatially uniform standing wave 
provided (28d) defines a real positive value of R. This occurs whenever 

p2 > la12. (29) 
Equation (29) implies that observable edge waves require that the strength of the 
parametric forcing exceeds the linear damping, and must be even larger if it is off- 
resonance (a, $, 0). Neither radiation damping nor nonlinear damping plays a role in 
the bifurcation from the trivial state, though both control the saturation amplitude of 
the resulting standing waves. We now see that a pure edge-wave mode will exist in one 
of two possible circumstances. Either the forcing frequency (or alternatively, the 
longshore wavenumber) may be restricted to a band where only a single mode exists, 
or if multiple modes are allowed by the linear problem, parameters must be chosen 
such that exactly one of the modes gives a positive value of R. 

Figure 1 shows the resulting bifurcation diagram in the (ar, R)-plane. The standing- 
wave solutions take the form of a family of ellipses parametrized by p2; the solutions 
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with R < 0 are not physically realizable. The figure and the following discussion are 
based on the assumption that Z, > 0; if C, < 0, the ellipses tilt the opposite way and 
a, should be replaced by -a, in the discussion below. The figure shows that the 
detuning parameter, a,, is dynamically significant. If 1a,1 is too large there can be no 
solutions. As a, increases from a large negative value, a standing edge wave bifurcates 
from the trivial solution at a, = - (I2 - a;);; the trivial solution is unstable to standing 
edge waves for - (J2 - a:); < a, < Cp2 -a:);, while for a, > (J2 -a:); there are again no 
solutions. For sufficiently large p2, there are two standing wave solutions in the interval 
(ai C, + ICI l,b'l)/Ci < 01, < - (p2 - a;);, with the two branches annihilating at a second- 
ary saddle-node bifurcation as a, becomes increasingly negative. This picture (with 
ai 3 0) has been previously discussed by Rockliff (1978), and is also familiar from 
studies of the Faraday system. 

The stability assignments follow either from the matrix M,, or more simply by 
noting that since the system (20) is stable with respect to perturbations in Q, the 
stability problem has only two significant eigenvalues. These correspond to 
perturbations f(7) and f(7) in the amplitude, R, and phase, 8, respectively: 

The eigenvalues of the coefficient matrix are 

ai+2Ci R+[(ai+2Z, R)2-4R(a,Z,+aiZi)-41Z12R2]f. (31) 

Since a, < 0, 2, < 0 and R > 0 we have stability if and only if 

a, C, + a, Ci + IC12R 2 0. 

The point a, C, + a, Ci + ICI2R = 0 corresponds to the secondary saddle-node bifur- 
cation. From figure 1 it may be seen that in the interval of a, where there are two 
solutions, the solution with the larger value of R is stable, while the smaller solution 
is unstable. The analysis above shows that there are no other instabilities with respect 
to spatially homogeneous perturbations. 

3.2. Homogeneous perturbations: a, = A ,  = 0 
In the case of no linear or nonlinear damping (ai = A,  = 0) but with radiation damping 
(A,  < 0), which is appropriate for inviscid shallow-water edge waves, solutions with 
R+ += R- become possible. Such solutions correspond to mixed modes. These are two- 
frequency propagating waves, and differ from pure travelling waves in lacking the 
symmetry of a rotating wave; i.e. for the mixed modes, evolution in time is no longer 
equivalent to spatial translations. These waves are given by the one-parameter family 
of solutions 

[a,+ 2(A,+ 0) R] 7 
@=tan- '(  - A i R  ), 

Ct,+CTR 
(32 a-c) 

for all R such that Ja+ZRJ > IpI, and are the counterparts of the generalized Stokes 
waves in the water-wave problem studied by Pierce & Knobloch (1993), constrained to 
be spatially homogeneous so that they can couple to the spatially averaged parametric 
excitation. Depending on the value of Q, they represent either standing waves (Q = 0) 
or an asymmetric mixture of left- and right-travelling waves. There are no pure 
travelling waves (Q = f R) unless there is no parametric forcing (p = 0). 
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FIGURE 2. Bifurcation diagram for a, = 0. The large ellipse is the locus of standing waves, Q = 0. The 
remaining black curves are the loci of travelling waves at Q = {O.Ol, 0.1,0.9}. All states with R < 0 
are unphysical, while all states in the interior of the grey curve are unstable to spatially 
homogeneous perturbations. The coefficient values are: a, = 0, Z = 1 - 1.22i, pz = 2. 

Since the right-hand side of (20b) is identically zero, perturbations to Q are 
associated with a zero eigenvalue. Consequently, only perturbations r" and t" in the 
remaining two variables R and 8, respectively, must be considered. The resulting 
system is 

The eigenvalues of the coefficient matrix are 

P2 - [a, + C, RI2)t. 
101 + 2RI2 (34) 

Using these results, it is now simple to examine the stability of waves with a given Q 
as a function of their amplitude R, or of waves with different Q as a function of the 
detuning parameter, a,. Figure 2 shows the result of such an analysis. The figure shows 
the bifurcation diagram for at = di  = 0, with the standing and travelling wave states 
as functions of a, and R for various values of Q and a fixed ,!I. States with R < 0 are 
not physically realizable. The large ellipse centred on the origin is the locus of standing- 
wave solutions (Q = 0). The exterior of this ellipse is completely filled with travelling 
wave states (Q > 0); no spatially homogeneous solutions exist in the interior. All 
solutions lying in the interior of the grey curve are unstable to homogeneous 
perturbations, since in this region (34) yields a real positive eigenvalue. Thus the 
segment of standing waves between the saddle-node bifurcation and R = 0 is again 
unstable, and there is an additional region of unstable travelling waves adjacent to the 
unstable branch of standing waves. The corresponding segment of the grey curve is in 
fact the locus of secondary saddle-node bifurcations occurring on the travelling wave 
curves. Each travelling wave curve which intersects the grey curve loses stability at a 
saddle-node upon entering the region, and regains stability at a saddle-node upon 
leaving it. For these curves, there is consequently an interval of a, such that R(a,) is 
triple valued, with the middle branch being unstable to spatially homogeneous 
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perturbations and the other two branches being stable. There are no other instabilities 
with respect to spatially homogeneous perturbations. As a consequence, variation of 
the parameter a, creates a mechanism for breaking the reflection symmetry of the 
solutions. For any given p2, a sufficiently large value of Ja,I forces the system off the 
ellipse of standing waves and into the travelling wave states. However, it seems unlikely 
that these solutions could be observed experimentally because of the dominant effect 
of viscous dissipation on laboratory lengthscales, which will always cause the travelling 
wave states to decay (cf. 9 3.1). 

3.3. Inhomogeneous perturbations 
We now return to the stability matrix in (25) and discuss the stability of uniform 
wavetrains with respect to spatially varying perturbations, i.e. those with r" = 0, but 
s" $: 0 and t" $; 0. The matrices M; governing modulational stability are 

The eigenvalues of these matrices are 

C:i-yim+zf [Ic~l"(c:,-yrm+2)2]t, (36 4 
(36b) -2 2 ;  c;i - yi m-' f [lcJ2 - (c, - y ,  m ) ] . 

There are now four conditions which must all be satisfied for modulational stability of 
a spatially homogeneous Stokes wave solution : 

( 3 7 4  b) cG-yim'2 + < 0 and Ic$l < Ic:-yrnk21 

for all real m' . The latter condition depends strongly on the dispersive character of the 
equations (i.e. on the real parts of the coefficients). However, provided that yt > 0, 
both inequalities are always satisfied for sufficiently large m', so that instability is 
restricted to finite wavenumbers. Consequently, the latter condition will yield instability 
if and only if the following quadratic equation for m*2 has a real positive root: 

The conditions for modulational stability of the Stokes waves are therefore 

c: < 0 and Iy12(Ic:12-lc$12) > (max{0,(c~y,+c~y,)})2. (39a, b)  

The 'max' is sufficient to handle the cases of two imaginary roots versus two real 
negative roots. It follows from (20a) that psin6' < 0, so that the first condition is 
always satisfied for Stokes waves. The second condition depends in detail upon the 
actual numerical values of the coefficients, but we note that in the absence of 
dissipation and parametric forcing we regain the Benjamin-Feir criterion for the 
stability of free wavetrains: dy < 0. It is important to note that (39b) depends on the 
mean flow (i.e. on p) eves in the case of standing waves. Furthermore, these conditions 
are contingent on the existence of a compatible mean flow in the bulk satisfying (9a, b). 
We also emphasize that the stability requirements (39) apply to inhomogeneous 
perturbations only. Note in particular that, as m' +O, the stability conditions (37) do 
not reduce to those governing stability with respect to spatially homogeneous 
perturbations (cf. Knobloch 1992; Pierce & Knobloch 1993). This discontinuity is a 
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consequence of the mean field coupling terms. In the next section we compute the 
coefficients of (15) for two different beach profiles and use the above results to discuss 
the stability of the resulting edge waves. 

4. Numerical results : exponential and linear profiles 
For essentially all relevant profiles, it is either inefficient or impossible to actually 

solve for the spectra of equations (7) and evaluate the integral transforms to obtain the 
particular solutions. It is much easier to discretize the equations and solve them 
numerically. The first step is to solve the linear eigenvalue problem, followed by the 
higher-order boundary-value problems. The solvability criteria may be evaluated and 
the coefficients of the amplitude equations obtained straightforwardly by singular- 
value decomposition of the discretized matrix operator (Mahalov & Leibovich 1992) 
rather than by evaluating the integrals in (I  1). In particular, the left null vector of the 
operator matrix corresponds to the discretized adjoint solution to within appropriate 
quadrature weights. The inner product of the left null vector and the discretized 
inhomogeneous term then approximates the continuous integral solvability criterion. 

We have reduced the computational domain from semi-infinite to compact by 
assuming that the depth profile is constant in the bulk for x 2 x,,. Thus we know the 
exact solutions up to constants of integration, and we may impose exact boundary 
conditions at any x1 2 xo. The two offshore-propagating solutions, j and q, are 
potentially complex and boundary conditions must be chosen to satisfy the appropriate 
conditions on the external wave field. The solutionj is a superposition of incident and 
reflected waves, but the absence of viscosity and surface tension from the linear 
problem requires total reflection (Miles 1990a, c). Thusj is in fact real up to an overall 
normalization constant, which we choose to give j a convenient normalization: 
j” + (“/2o)’ = l /n.  The solution q has a particular solution asymptotic to a radiated 
wave, eziwz, but no incident component. The boundary conditions at x, for p ,  q and 
r may be found by multiplying (6a), ( 7 d )  and (7 f l  by ePKz, eaiwz and ePKX, respectively, 
and integrating by parts over [x,, co] subject to the assumption that {pe-Kz,p’e-Kx, 
- 2iwg + q’, repzKx, r’e-zKx} + 0 as x + co . The boundary conditions imposed at x, are 
thus 

Ka+a’ = 0, Kp+p’ = a(k-c,o)/K, (40a, b) 

(40G d )  
oa2 - 3w3a2 

4K ’ (4k2 - 3w2), 2Kr + r’ = ____ -2iwq+q’ = - 
K- iw 

where K = (k2-w2)i .  Note that there are also non-trivial boundary conditions on e+ 
(at order [31( f l)]) at x, which cannot be ignored. These are derived from (8b, c) by 
multiplying by e-Kx and integrating over [x,, 031, after noting that each second-order 
solution may be written explicitly in this domain up to a single constant of integration. 
In general, these boundary conditions affect the nonlinear coefficients, but the 
contribution falls off with increasing k and fixed x, due to the exponential decay of a. 
For the examples discussed below, the contributions are significant only for small k.  

The problems were discretized by Chebyshev collocation on the interval [0, x,]. The 
mesh points are defined by {x = ;x.,(l -cos (T(n- l)/(N- 1)))l n = 1,. . . , N). Since 
x = 0 is a regular singular point with zero exponents for each equation, there is a regular 
and a singular solution. However, no explicit regularity condition is required since the 
singular solution is not representable by Chebyshev polynomials. Thus we need only 
( N +  I) polynomials for a well-posed representation of each problem except the one for 
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FIGURE 3. Discrete dispersion relations, w2 us. k (g  = h, = l), for (a) exponential and (b) piecewise- 
linear beach profiles. The grey parabolas, w2 = k2,  are the boundary between continuous and discrete 
modes. The linear asymptotes are the dispersion relations for an unbounded linear profile (Rockliff 
1978). 

j .  There is exactly one homogeneous solution f o r j  which is bounded at x = 0, so that 
the discretized operator matrix for j is N x N and has rank ( N -  1). The null vector of 
this operator matrix is the discretization of the homogeneous solution for both (7c) 
and ( 7 4 ,  but it does not satisfy the homogeneous boundary conditions for q (i.e. the 
radiation condition). In fact, there is no regular homogeneous solution to the 
combined equations for q, ( 7 4  and (~OC), so that the ( N +  1) x ( N +  1) operator matrix 
for q has full rank and is directly invertible. 

We have performed the calculations for two experimentally relevant depth profiles : 

exponential : h(x) = 1 --e-’O”, (41 a) 
x for O < x < l  

1 for x 2 1. 
piecewise linear : h(x) = 

The results for any scaling of x may be obtained by rescaling: 

{.f, 4B, 4, f ,  k, 4 tg, b, a, y ,  i, i, 4, e,, c, 4 

In both cases we used N = 60, and set the outer boundary condition at x1 = 3 and 
x1 = 1 for the exponential and linear profiles, respectively. The exponential profile 
satisfies the saturation assumption to better than thirteen digits at x,. For the linear 
profile, placing the boundary at the discontinuity in the beach slope enhances accuracy 
by pinning the discontinuity relative to the discretization mesh, as well as allowing 
super-linear convergence of the polynomial coefficients. The results of the linear 
eigenvalue problem are summarized in figure 3.  The region above the curve w2 = k2 is 
the continuous spectrum. Below this curve, there exists a finite number of discrete 
modes for any given k .  The most important result from the linear computations is that 
there exists a finite value of k = k,,n 2 1, below which each mode no longer exists. 
Only the fundamental mode exists for all k .  The critical wavenumbers for the first three 
modes are (14.1421, 24.4949, 34.6410) for the exponential profile and (2.526 18, 
4.56310, 6.57354) for the linear one. These values were found by locating 
singularities of the discretized operator matrix along w2 = k2. The grey lines in figure 
3(b) are the dispersion relations for an unbounded linear profile within the shallow- 
water equations (Rockliff 1978); as expected, the dispersion relations for the piecewise- 
linear profile asymptote to these lines in the limit of large k .  
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FIGURE 4. Linear eigenfunctions, a(x) : 
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FIGURE 5. [211] mode, p ( x ) :  (a) exponential, k = 4; (b) linear, k = 1. 

FIGURE 6 .  [202] homogeneous mode, j ( x ) :  (a) exponential, k = 4; (b) linear, k = 1. 
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FIGURE 7. [202] inhomogeneous mode, q(x). Black is the real part, grey the imaginary part. 
(a) Exponential, k = 4; (b) linear, k = 1. 

For all wavenumbers (or frequencies) less than k,, the single mode restriction is 
satisfied automatically even in the absence of linear damping. Figures 4-8 are plots of 
the solutions to (9, (6a) and (7) for both profiles at a representative k < k,. The 
jaggedness of the oscillatory solutions does not reflect inaccuracy in the numerics, only 
the coarseness of the mesh. The oscillatory solutions show convergence after 3&40 
polynomials, while non-oscillatory solutions converge after 1 &20. Figures 9-1 6 are 
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FIGURE 8. [222] mode, ~(x):  (a) exponential, k = 4; (b) linear, k = 1. 
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FIGURE 9. Group velocity for the fundamental mode: (a) exponential; (b) linear. 
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FIGURE 10. p for the fundamental mode: (a) exponential; (b) linear. 

FIGURE 11. 8, for the fundamental mode: (a) exponential; (b) linear. 

plots of the group velocity and amplitude equation coefficients as functions of k 
through the pure mode range, 0 < k < k,. The quantity (6,+h,)/(6,+ht) tends to the 
value -0.82 for large k, in agreement with Rockliff (1978) for a linear unbounded 
profile. Note that the left null vector, which is the discretization of the linear 
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15. h for the fundamental mode. Black is the real part, grey the imaginary part. 
(a) Exponential; (b) linear. 

homogeneous adjoint solution, is only defined up to an arbitrary normalization. This 
normalization appears in both the plots and the evolution equations as an arbitrary 
function of k multiplying each of the nonlinear coefficients except p. In order to 
maintain the normalization assumed in (1 l), it is necessary to specify the normalization 
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FIGURE 16. 6 for the fundamental mode: (a) exponential; (b) linear. 

of the left null vector appropriately. This is accomplished by setting a convenient 
normalization during the computations, evaluating [ ," a' dx using the numerical 
solution for a and then rescaling the coefficients appropriately. 

For edge waves in the shallow-water formulation with no detuning, 

a = a .  = A .  = yi = 0. r a  

In this case, the expressions for the coefficients relevant to modulational stability 
reduce to c: = (AR'+ZR') and c: = AR'. If we specialize to standing waves 
(R+ = R-), we may drop the superscripts, and the stability condition (39b) is 
independent of R and hence of p as well. The numerical data can then be used to show 
that c ; ~  > (lc,12-lc212) > 0 and that clr > 0 for both profiles. Furthermore, while our 
calculations span only a finite range of k,  there is nothing in the data to suggest that 
either of these conditions will change upon consideration of a larger interval. 
Consequently, we find that the stability condition (39b) reduces to yr  < 0, which is 
never the case for either profile. If it were possible to generate a compatible mean flow 
solution to (9a,  b), we would then conclude that standing waves for both profiles are 
unstable to modulational perturbations. 

We note that there appears to be a minor problem with our discretization method 
in the neighbourhood of k = 10.5 for the r problem with an exponential profile. For 
N =  60, the solution appears to be oscillatory instead of decaying, and the 
corresponding value of S is too small by roughly 25 YO. The problem persists to at least 
N = 100, but is eliminated by reducing the order to N = 40. This is more than sufficient 
to ensure accuracy for a decaying solution. We perform the inversion of the operator 
matrix by singular-value decomposition, and we hypothesize that by increasing the 
order we are introducing a singular vector which happens to be resonant with the 
discretized inhomogeneity. We emphasize that this is an artifact of the numerics; there 
are no homogeneous solutions for r which may be physically resonant. 

5 .  Discussion 
The primary concern of this paper has been the derivation of the correct evolution 

equations for spatially modulated counterpropagating edge waves in shallow water. 
We have shown that the class of Stokes wave solutions is more restricted than previous 
work would imply. This is due to the non-local nature of the equations, which 
eliminates the coupling of the parametric forcing to spatially inhomogeneous solutions. 
If linear viscous damping is included, only homogeneous standing waves remain as 
stable solutions. If the formulation is inviscid, there exists a one-parameter family of 
mixed homogeneous travelling waves. Pure travelling waves are never solutions of the 
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parametrically driven problem. Spatially homogeneous pure travelling waves are, 
however, solutions of the unforced problem but only in the absence of linear damping. 
The work of Mathew & Akylas (1990) indicates that this is an artifact of the shallow- 
water formulation, since radiation is generated only via interactions between the 
counterpropagating wavetrains. In the more general finite-depth formulation one 
generically expects that quadratic self-interactions also generate radiation leading to 
nonlinear damping of the pure travelling waves as well. 

The use of the inviscid shallow-water equations entails in addition a physical 
inconsistency related to the energy balance. With these equations the only non-singular 
solution forj(x) corresponds to total reflection of the incident wave (cf. Miles 1990a, c). 
However, in general q(x) has a non-trivial solution which corresponds to radiation 
driven by quadratic interactions of the counterpropagating edge waves. This leads to 
the apparent inconsistency that more energy is exiting the edge-wave system via the 
reflected and radiated waves than is entering with the incident wavetrain. Formally, 
there is no contradiction in the limit of small c since an O(s) edge wave can leak O(2) 
radiation on timescales of O( 1 / e 2 )  with only an O(2) energy loss (energy densities and 
fluxes are proportional to the amplitude of the wave squared). This is in fact the origin 
of the dissipative radiation terms in (16a, b), since this O ( 2 )  change in edge-wave 
energy is manifested as an O( 1) change in the amplitudes, A *, on the O( 1 /ez) evolution 
timescale. This argument does not, however, provide a complete resolution to the 
question of how the edge wave may achieve an O(e) amplitude while radiating and in 
the face of total reflection of the incident wavetrain. The question of energy balances 
in the initial value problem is likely to be resolved only through a complete accounting 
of viscous dissipation, surface tension, and contact line dynamics. This type of 
calculation would self-consistently allow partial reflection of the incident wavetrain 
(Miles 1990a, c) but is beyond the scope of this paper. It should be emphasized that 
total reflection of the incident wave is not built into the evolution equations; (16a, b) 
should result from any set of model equations which respect the inherent O(2) 
symmetry of the problem. 

We have studied two experimentally relevant profiles, exponential and piecewise 
linear. The results for any rescaling of these profiles follow from (42). The primary 
linear result is that there exists a minimum forcing frequency and corresponding 
minimum wavenumber of the edge waves below which only the fundamental mode 
exists. Consequently there are intervals of w and k such that the linear mode is unique. 
This is very important since in the absence of viscosity all linear modes bifurcate from 
the trivial state simultaneously. Formally, any asymptotic expansion that fails to 
include all allowed modal interactions is incomplete. Several authors have used 
unbounded depth profiles within the context of the shallow-water equations. This 
formally contradicts the basic assumptions of the governing equations, but it is prima 
facie acceptable since the evanescent edge wave falls off exponentially while the depth 
is typically assumed to increase linearly. However, the unbounded problem generically 
has a countably infinite discrete spectrum of evanescent modes for all forcing 
frequencies. Therefore, no asymptotic expansion with a finite number of linear modes 
can correctly represent the dynamics unless linear damping is included to split the 
bifurcation. 

There are several ways to include linear viscous damping in a surface water wave 
problem. The most satisfactory method is to solve the Navier-Stokes equations for the 
full depth-dependent problem. While there has been some work on the linear aspects 
of this problem for specialized beach profiles, the weakly nonlinear problem for general 
beach profiles has not been attempted. The next best approach is to approximate the 
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effects of weak dissipation through matched asymptotic expansion in the surface and 
bottom oscillatory boundary layers. However, there are several significant difficulties 
with this approach when applied to shallow-water edge waves. First, the shallow- 
water equations are not compatible with the assumption of oscillatory boundary layers 
which are asymptotically thin relative to the depth, unless the viscosity is assumed to 
scale with some power of the asymptotic parameter, c. Even then, the contact line at 
x = 0 cannot be rigorously accounted for within this type of model. Excluding the 
problems at the water line, viscosity is still a singular perturbation in the Navier-Stokes 
equations; consequently this approach, which removes the viscosity from the linear 
problem and moves it to higher orders in the perturbation expansion, cannot be 
considered valid for more than a heuristic understanding of the effects of damping. A 
further problem with the boundary-layer approach arises with the mean flow. In effect, 
the linear damping must be included separately for each frequency of oscillation in the 
problem. This approach then implies that the mean flow must remain undamped since 
it does not oscillate on the fast timescale. Nonetheless, we accept the qualitative 
implications of boundary-layer damping, which leads us to consider a non-zero value 
of the coefficient cli < 0. While it is possible to calculate an expression for this 
coefficient within the context of the Boussinesq equations, this results in a considerable 
and not particularly enlightening increase in the complexity of the asymptotic 
expansion. 

The shallow-water equations give yi = 0, since there is no radiation generated by the 
Sturm-Liouville problem, (6 a), and p is inherently real. In the generic formulation, we 
do not exclude the possibility that yi > 0, representing viscous dissipation on O(C1) 
scales. Note, however, that if this term is retained, so should be a corresponding 
damping term in the mean flow equation (9). Nonlinear dissipation is captured by 
Si < 0, which can arise (in more general formulations than the shallow-water equations) 
via radiation caused by quadratic self-interactions of the progressive edge waves 
(Mathew & Akylas 1990). This type of radiation does not occur for shallow-water edge 
waves since the eigenvalue of equation (5) can never intersect the continuous spectrum 
of equation (7f). The only dissipative term that does arise in the shallow-water 
equations is hi < 0. This dissipation is caused by energy leaked to radiation, which is 
generated at second order by quadratic interactions of the counterpropagating edge 
waves. In particular, it is generated by the resonance of the homogeneous solution to 
(7 d )  and the inhomogeneous term. The homogeneous solution always exists for a given 
w2, so that barring a zero in the eigenfunction transform of the inhomogeneous term 
at w2, this type of radiation is always present. 

There are significant differences between the mean-field Davey-Stewartson equations 
studied by Pierce & Knobloch (1993) and the edge-wave equations, (9) and (12). The 
former are fully (2 + 1)-dimensional, while (9) and (12) constitute a (1 + 1)-dimensional 
system. Further differences are evidenced by the complex coefficients due to dissipation 
and radiation, the parametric forcing terms, and the additional restrictions placed on 
the solutions by the mean flow equations (9). In particular, in the absence of mean 
flows (B  = 0) equation (9b) implies that (IAf)2-IA-12) is independent of Y.  However, 
even if this condition were initially satisfied for some spatially modulated state, it will 
necessarily be violated in time of O(e-'); this is because modulations in the edge-wave 
envelopes, A', propagate in opposite directions at the O(1) group velocity but evolve 
on the slower timescale O ( P ) > .  These states are therefore not allowed by the evolution 
equations unless they are supported by either a non-trivial mean flow extending into 
the bulk of the fluid or else an external forcing which is not spatially homogeneous. In 
particular, several authors have speculated on the existence of solitary edge waves (cf. 
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Akylas 1983), but these waves must be allowed to generate a compatible mean flow. 
Such a flow will in turn affect the form of the solitary wave as well as its stability 
properties. 

We have found that a correct accounting for the mean flows raises several subtle 
points. The governing equation, (2), for the velocity potential, 4, allows a freedom in 
the choice of gauge up to a linear term in the variable T = et. It is necessary to return 
to the Bernoulli equation, ( 1  a), in order to identify this term as a net shift in the surface 
elevation. As a result, it is necessary to specify the gauge such that the spatial average 
of the surface elevation is zero as x +- co. In the near-shore region, there is still a net 
'set down' effect owing to the quadratic interactions of the propagating edge waves, 
but this corresponds to an O(e') change in the water volume per unit length of beach 
and may be offset by an infinitesimal change in the water level at infinity. It is 
particularly important to note that this choice of gauge is not independent of the 
envelope amplitudes, A *, and hence results in an additional mean-field term in the 
evolution equations. For spatially homogeneous solutions, the mean-field averaging 
has no effect and the mean flow appears only for travelling wave states. However, 
spatially dependent perturbations (i.e. modulational instabilities) are affected by the 
averaging and hence the modulational stability criteria do not reduce to the stability 
criteria for spatially homogeneous perturbations in the limit that the perturbation 
wavelength goes to infinity. Moreover, the effects of the mean flow do appear in the 
modulational stability criteria for standing waves, in spite of the fact that the 
unperturbed state has no mean flow. 

In the face of the strong coupling between the mean flow and the edge waves one 
may expect the modulational dynamics of the unbounded problem to be tame unless 
the mean flow is externally forced. This follows from (9a) which shows that the mean 
flow must satisfy a linear wave equation, and that mean flow disturbances propagate 
at the shallow-water phase speed, (gh,,); = 1 .  In particular, if we consider the 
modulational stability of the Stokes waves, (9b) shows that a modulational 
perturbation of the form (21 a), (24) generates a mean flow perturbation (21 b) which 
at leading order propagates at the group velocity, cg. Since this perturbation also has 
to satisfy (9a), a necessary condition for the existence of a modulational instability is 
that the propagation speed of mean flow disturbances matches that of the modulational 

(43) 
disturbances, or 

cg = (gh,,); 1 .  

This condition is in fact overly strict owing to our assumption that B is independent 
of the slow offshore coordinate, ex. If B is allowed to represent obliquely propagating 
shallow-water waves, the equality in (43) may be replaced by cg 2 (gh,)x. However, 
from (5 )  we have that 

00 1; (w'a' - k'ha') dx = lo ha" dx > 0, (44) 

and hence that 
(45) 

The first inequality follows from the fact that w' is a discrete eigenvalue of equation (5) ,  
while the second inequality follows from (44) and the expression for the group velocity, 
(6 b). Thus in the shallow-water formulation there are no modulational instabilities 
through the usual mechanisms. This result is an anomalous feature of the shallow- 
water formulation and does not necessarily hold for the full O( 1 )  depth problem since 
there is no strict lower bound on the phase speed of deep-water waves. If viscosity is 
included at leading order, one may expect that the leading-order mean flow equation, 

1 > w/k > cg. 
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(7a),  will yield a solution for the offshore dependence of the mean flow, b(x), which 
decays on the fast scale. When one evaluates the solvability criterion at order [300] 
(from (8a)) all of the integrals will be bounded and independent of c .  Consequently, 
one will obtain a single inhomogeneous wave equation for the mean flow envelope, B, 
rather than the two separate equations (9a, b) obtained from the shallow-water 
equations. This type of inhomogeneous wave equation also arises in the water-wave 
problem on finite depth (Pierce & Knobloch 1993), and it is clear in such a formulation 
that modulations of the wave envelope have a causal relationship with variations in the 
mean flow. Similarly, it is clear that shallow-water edge waves couple to the mean flow, 
but since they are trapped on an O(1) lengthscale they cannot generate compatible 
mean flows which propagate throughout the bulk. Hence the edge waves in the 
shallow-water formulation are relegated to a more passive role in the mean flow 
interaction. In addition, if there were a component of the mean flow that decayed in 
the offshore direction, it would contribute to the set down of the surface elevation in 
the near-shore region (cf. (14)). This is one possible explanation for the experimental 
observation that the shallow-water equations underestimate the set down associated 
with standing edge waves (Yeh 1986). 

In addition to parametric forcing, edge waves can also be produced as solutions of 
the initial value problem in the unforced system @ = 0), or by sidewall forcing as in the 
experiments of Yeh (1985, 1986). In the latter case, travelling waves can exist as 
solutions and are not damped since, within the shallow-water formulation, radiation 
requires the existence of counterpropagating waves. For the same reason, there are no 
solutions in a spatially extended system in the form of counterpropagating waves, 
though such solutions may exist if the beach has an O( I)  length (Yeh 1986). As in the 
parametrically forced problem, modulational instabilities are not allowed in the 
shallow-water formulation, which apparently contradicts the results of Yeh (1985) for 
progressive edge waves. The experiments use a depth profile corresponding to our 
piecewise linear profile (cf. $4). Yeh's results indicate that the shallow-water equations 
describe the linear fundamental edge waves more or less accurately, though the 15" 
beach angle is at the outer edge of validity. Yeh observes an instability of the weakly 
nonlinear progressive waves which he attributes to modulational instability, though he 
points out that it does not follow the expected evolution of the Benjamin-Feir 
instability. In particular, he observes that the lower sideband grows without bound, 
while the upper sideband saturates at a very low level. Close inspection of the data, 
however, seems to indicate that the upper sideband is simply part of the smooth tail of 
the primary carrier frequency and decays at the same rate. 

We believe that the conditions of Yeh's experiment do not conform particularly well 
to the restrictions implicit in our analysis. First, the dissipation is sufficiently large that 
the progressive waves that Yeh has studied are, strictly speaking, not homogeneous 
travelling wave solutions to (17) at all. Second, boundary-layer estimates of the 
dissipation indicate that there is a significant difference between the damping rates of 
the sidebands. Thus the instability could not be considered as a modulational 
instability governed by the evolution equations (9) and (12), since it is implicit in the 
derivation that the sidebands must have wavenumbers close enough to the carrier wave 
that they will have the same damping rates. If the lower sideband is experiencing 
resonant growth, this is likely to be the result of a resonant triad interaction of 
sidebands with an O(1) wavenumber separation from the carrier wave (the side- 
band frequencies differ from the carrier wave by roughly 16.7 %). However, we note 
that the dispersion relation for inviscid edge waves on an unbounded linear beach 
(w = (gk sin S):, S the beach slope) does not admit solutions to the resonance equations 
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in the neighbourhood of the carrier wave. In addition, we note that the modulations 
of the wavemaker could cause contamination of the low-frequency spectrum which 
would not necessarily be perceptible in the processed data. Such contamination can 
play a definite role in the modulational stability either as an inhomogeneous solution 
to the mean flow equations, or perhaps through a more complicated resonance 
mechanism. These questions may be resolved either experimentally by increasing the 
lengthscale of the edge waves thereby reducing the effects of viscous dissipation, or 
theoretically by improving the relevance of the predictions with a full solution to the 
O(1) depth problem with viscosity and surface tension. 

While we have not considered the modal interaction problem, it is interesting to 
speculate on the physical differences between the pure mode and mixed mode cases. In 
particular, progressive edge waves have often been cited as the primary cause for beach 
cusps, in spite of the fact that edge-wave theory has never predicted steady-state 
currents that vary on a spatial scale appropriate to cusp formation. This has lead several 
researchers to conclude that standing edge waves are the principal cause of cusp 
formation, although the currents generated by the standing waves are oscillatory in 
time and are not as efficient a mechanism for sand transport as steady-state currents. 
The mean flow is not a candidate for this effect since the cusps appear on a spatial scale 
that is presumably on the order of the fast longshore wavelength. However, quadratic 
interaction of linear modes with the same frequency but different wavenumbers would 
be responsible for generating stationary cells with longshore wavenumber that is the 
sum or difference of the interacting mode wavenumbers (for counterpropagating and 
copropagating modes, respectively) and independent of the fast timescales. This is 
similar to the [220] term in our expansion ( 3 ) ,  but there would be no reason to expect 
that the driving inhomogeneous term would vanish identically as it does in (7e). These 
stationary cells give precisely the steady-state flow patterns one would expect to 
generate cusps, so that the existence of pronounced beach cusps might be expected to 
coincide with the existence of mixed modes. It is important to note that these cells will 
be formed in response to interactions of both counterpropagating and copropagating 
modes. In particular, cusp formation by this mechanism could occur for travelling 
wave states as well as standing waves. Guza & Chapman (1979) point out that cusp 
formation under experimental conditions with non-reflective boundaries appears to 
depend on almost exact normal incidence of the driving waves. Since the experiments 
are designed to excite a single linear mode, this would indicate that the primary 
experimental mechanism for cusp formation is indeed standing waves. However, they 
also conclude that cusps on a natural beach should be surprising since the exact normal 
incidence or perfectly reflective endwalls which favour standing waves are not 
common, in contradiction with numerous field observations. In fact, natural systems 
are typically driven with a large range of frequencies and incident directions 
simultaneously and cannot adhere to the single linear mode restriction as well as 
experiments do. Consequently, mode interactions and steady-state currents of the type 
discussed above are not unlikely. Guza & Chapman’s observations thus lend credence 
to the hypothesis that mixed edge-wave modes may be an important mechanism for the 
formation of beach topography and rip currents. 

We are grateful to A. J. Bernoff for a helpful suggestion concerning the origin of the 
detuning coefficient a,. 
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